
SIMULATION OF A GALAXY ANDREW WEDGBURY

Simulation of a Galaxy

3rd Year B.Sc. Project
1999/2000

Andrew Wedgbury
Exam number: 19477

Abstract

he aim of this project was to simulate the temporal evolution of a
disk of stars interacting under gravitation using the particle in cell

method. The simulation was developed to achieve the greatest accuracy
and speed possible in the time allowed and its limitations were
discussed. It was then used to obtain results for a variety of galactic
models, some were comparable to observations of real galaxies, giving a
unique insight into the theory of galactic formation and dynamics.

T

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY ANDREW WEDGBURY

Table of Contents

INTRODUCTION 1
HISTORY OF GALAXY SIMULATION 2
OBJECTIVES 3

CONSTRUCTING THE MODEL 3
USING THE MODEL 3
FURTHER PLANS 3

WHAT I HOPE TO FIND 4
PROJECT OUTLINE 4

THE MODEL 5
PARTICLE METHODS 6

THE PARTICLE-PARTICLE (PP) METHOD 6
THE PARTICLE-MESH (PM) METHOD 6
CELL WEIGHTING METHODS 7
COLLISIONLESS MODEL 7

SETTING UP THE MESH 7
UNITS 8
PROGRAMMING CONSIDERATIONS 9

OVERALL PROGRAM STRUCTURE 9
DATA STORAGE 10
FIELD CALCULATIONS OVER THE MESH 11
UPDATING PARTICLE POSITIONS AND VELOCITIES 11
DATA OUTPUT 12

CHOICE OF PARAMETERS AND ACCURACY 12

A SIMPLE STELLAR DISC 14
SETTING UP THE MODEL 15
RESULTS 15
IMPROVEMENTS 17

DISC WITH FIXED HALO 19
UNIFORM DENSITY HALO 20

INITIAL RESULTS 20
TOTAL ENERGY VARIATION 24
DENSITY AND VELOCITY DISTRIBUTIONS 24
VARYING THE HALO RADIUS 27

NON-UNIFORM DENSITY HALO 30
RESULTS 30

CONCLUSIONS 34

APPENDIX 42
PROGRAM LISTING 43

GALAXY.CPP 43
RESOURCE.H 63
RESOURCE.RC 63

REFERENCES 65

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY INTRODUCTION ANDREW WEDGBURY

 1

Introduction
his section will introduce the subject of galactic simulation by
exploring briefly the previous work that has been done in the field.

Objectives for this project will be stated along with anticipated results
and further plans.

T

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY INTRODUCTION ANDREW WEDGBURY

 2

History of galaxy simulation

Using computers to simulate galaxies has been performed since the late 1960s
and has got more and more sophisticated as more powerful computers have been
available. The earliest simulations, such as those performed by Hohl (see [6])
used integer arithmetic and took a very long time to run due to the computer
capabilities at the time. The results obtained, however, proved to be very
interesting and valuable to the development of our theories regarding the
structure of galaxies. During the 1970s, a lot of progress was made and various
models were developed to simulate more and more stars with greater accuracy
and speed.

Many people have independently produced simulations that produce models of
galaxies that appear very similar to that observed in the sky, however, one
problem seems to be that spiral patterns that appear in the simulations rarely
last more than a few galactic rotations. We believe that galaxies have been
around for enough time for them to complete in excess of 501 rotations, so it
seems unlikely that these models are accurate considering the fact that a great
proportion (over 2/3) of observable galaxies still have a well defined spiral
structure.

More progress has been made by Zhang (see [11]), who simulates the gas and
dust that makes up the interstellar medium along with the stars to achieve more
realistic results. Alongside the development of galaxy simulation techniques there
have been lots of theoretical developments. These include the density wave
theory, which suggests that the spiral structure rotates as a density wave, i.e.
the stars do not rotate at the same speed as the spiral pattern.

There have also been great improvements in the field of astronomy, giving us
more information about observed galaxies, and allowing us to see galaxies that
are further away. Using spectroscopy, we can observe the red shifts of different
parts of galaxies to determine if they are rotating, and at what speed. With the
Hubble Space Telescope, we are now able to observe galaxies that lie at
incredible distances, so far away that the light from them has travelled for over
85% of the age of the universe to reach us. This gives us the amazing ability to
see how galaxies looked back then, this can be compared with the results from
our simulations.

1 This depends on the age of the universe, which is presently believed to be about 12 Billion years
(1.2x1010)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY INTRODUCTION ANDREW WEDGBURY

 3

Objectives

Constructing the model

This project will involve constructing a computer simulation of a galaxy that can
be used to accurately simulate its temporal evolution for several billion years,
and hopefully up to the estimated age of the universe. The main objectives for
constructing the model are:

ª Investigate methods used to simulate disks of stars and general n
particle systems.

ª Compare methods of calculating the forces between particles in systems
with large numbers of particles.

ª Construct a computer program using the most appropriate method to
perform the simulation.

ª Test the program by running with a simple system and comparing
different methods of calculating the forces.

ª Obtain an estimate of the errors in the model and how they relate to the
model parameters used.

ª Rigorously test and ascertain the validity of any assumptions that were
made to construct the model.

Using the model

Once the simulation has been tested and is producing results of an acceptable
accuracy, it will be used to simulate large numbers of particles interacting in a
galactic model. The objectives will be:

ª Investigate initial conditions used in other models of galaxies.

ª Construct a routine to set up the initial positions and velocities of the
particles according to the model.

ª Run the program and observe the output for various models,
investigating transient features and also seeing what happens after long
periods of time.

ª See what models, if any, produce output that is comparable to actual
galaxies.

Further plans

A galactic simulation can be used to investigate a huge variety of different
galactic models, if time allows, these extra objectives will be investigated:

ª Further optimising the program to increase speed and accuracy of the
simulations.

ª Construct a simulation of interstellar gas as well as stars, including star
formation and evolution within the galaxy.

ª Extend the model to include satellite galaxies. Many of the galaxies in
our local group have small satellite galaxies, including our own. Observe
what effect this has on the structure.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY INTRODUCTION ANDREW WEDGBURY

 4

ª Simulate galactic collisions and compare with real observable colliding
galaxies.

ª Simulate clusters of galaxies.

What I hope to find

It is hoped that the simulation will, for some parameters, produce results that are
comparable with observable galaxies. In comparing the simulation results with
data from actual galaxies, the following criteria will be used:

ª Long lasting, well-defined spiral structure.

ª Particles remain bound in the system (i.e. negative total energy), but it
is expected that a few may reach escape velocity in the event of a
collision.

ª Exponential decrease in luminosity with distance from galactic centre,
this is what is observed from most spiral galaxies. How the luminosity is
dependent on the particle density will need to be considered.

ª Rotation curve that compares with actual galaxy rotation curves, most
appear to have higher than expected angular velocities at large radii.

Project outline

The next section will discuss the construction of the simulation program along
with simple galactic models. The rest of the project will be concerned with
expanding and improving on these models and testing them using the simulation.
Results will be compared throughout with actual data from astronomical
observations, including pictures of galaxies from the Hubble Space Telescope.
Further analysis of these will be performed to try to ascertain whether the
simulations are realistic or not, indicating if our galactic model is correct.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 5

The Model
he most critical part of this project is the construction of the
computer simulation model as it is from this that all the results will

be obtained. This section will look into the different types of particle
simulation models that could be used, discussing the relative merits of
each when used for simulating systems containing large numbers of
particles. The most appropriate simulation model will be chosen and
used to construct a computer program to perform the simulation. This
will be kept very simple at first so it can be tested and analysed easily to
make sure the simulation is working correctly. Once this has been
achieved, the program can be optimised to improve speed and accuracy
if possible, whilst referring back to the previous test results as a check.
At the end of this section the simulation should be ready to use and
initial conditions will be discussed.

T

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 6

Particle methods

The most appropriate way of simulating a system such as this is using particle
methods, this involves tracking the trajectories of a number of particles as they
move through the system interacting with each other appropriately. The particles
used in the simulation do not necessarily have to correspond to actual particles
such as stars or atoms, instead they could be groups of stars or just represent a
small amount of a fluid being simulated. In this way, particle methods are very
versatile and are often used for simulating flowing liquids, gases and plasmas.
The advantage of using particle methods is that they can be used in very
complicated systems where there is no analytical solution. Take for example, a
single planet orbiting a star - the orbit of the planet can easily be obtained using
differential equations. If, however, we introduce a second planet, the interactions
become a lot more complicated and the orbits cannot be expressed so simply.
Using particle methods, large numbers of interacting particles can be simulated,
the forces between each pair of particles being considered at every step.

A medium to large galaxy contains ~1011 stars, this is obviously far too many for
individual stars to be used as particles: this would require more than a Terabyte
of memory! instead the particles will have to represent a large number of stars.
The exact mass of these 'superstars' will depend on the number of particles used
and the mass of the galaxy being simulated.

The Particle-Particle (PP) method

The biggest problem with using particle methods arises when the interactions
between the particles need to be evaluated. The movement of every particle
depends on the gravitational force on it, this is made up of contributions from
every other particle in the system. If N particles are used in the simulations, with
the force between each pair of particles given by:

 rF ˆ
2

21
2,1 r

mGm
−= (1)

Then this needs to be evaluated N2 times to perform each step of the simulation.
On a fairly powerful modern computer this would require more than an hour if
more than a few tens of thousands of particles are used. This would result in a
program that is far too slow and inaccurate.

The Particle-Mesh (PM) method

An alternative to calculating the force on every particle is to calculate the
gravitational field over the space occupied by the particles, then applying the
force to the particles due to the field at their position. Instead of calculating the
field at every point in space, it can be calculated at a series of points lying on a
mesh. Also, instead of calculating the field due to every particle, we can make
the approximation that the mass of each particle lies at its nearest grid point. We
can then calculate the field at one grid point by considering the masses at the
other points. This is known as the particle-mesh or PM method and is described
in Hockney and Eastwood [1]. If a mesh of C by C points are used, then of the
order of C2 x C2 = C4 calculations of equation 1 are required. Somewhere in the
region of 100 by 100 cells is ample for this type of simulation, resulting in a
program that runs 100 times faster than the equivalent PP method with 100,000
particles.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 7

Cell weighting methods

In the method described above, the mass of each particle is assumed to lie at its
nearest grid point. For obvious reasons this is known as the nearest grid point (or
NGP) method. A better approximation may be to share out the mass of each
particle between the adjacent grid points in proportion to the particle's distance
from each, however, this would require a lot more calculation for each particle,
this is known as the cloud in cell (CIC) method. The NGP method will initially be
used for the simulation, although CIC may be used later on if appropriate.

Collisionless model

In a typical galaxy the minimum distance between stars (excluding multiple star
systems) is around 1016m, while the maximum radius of the very largest stars is
no more than 1010m. In other words, the mean separation is more than 1 million
stellar radii. In comparison, molecules in a typical gas have a mean separation of
around 50 molecular radii. This means that the chances of two stars colliding in
the simulation are extremely unlikely (note the term "collision" here refers to
particles being close enough for their trajectories to be significantly deflected).
The mean free time between collisions for a system of stars can be obtained in a
similar manner for that of a gas, and is:

nmG

v
c 22

3

4π
τ = (2)

Where v, m and n are the mean values for the velocity, mass and number
density of the stars in the system. This will be used to check the simulation to
see if the collisionless approximation holds. It is important that the system is
collisionless if the PM model is to be used because particles cannot interact with
particles within the same mesh cell, making collisions impossible. This is a real
advantage from a programming point of view because collisions can lead lead to
particles gaining a huge velocity and exceeding the range of the variables used to
store it. In effect, the PM model introduces gravitational softening at short
ranges, a similar effect could be achieved in PP models by replacing r with (r-d),
where d is a constant, in equation 1. This would make the force go to a finite
value instead of infinity for zero separation.

Setting up the mesh

As a circular disk of stars is to be simulated, The possibility of using a polar co-
ordinate system for the mesh was investigated. However, this creates more
computational complexity due to the cells having different areas and the
distances between mesh points becomes more difficult to calculate. It was
therefore decided that a regular Cartesian mesh would be more appropriate. It
was observed that the stars that make up the spiral structure in spiral type
galaxies lie mainly in a highly flattened disc, with a spherical bulge or halo in the
centre. it was therefore decided to simulate just the disc stars and assume the
halo is stationary so it can be added on as a radial force to every particle.
Because of the high degree of flattening seen in the discs of stars of most
galaxies, it was decided that the particles should be constrained to move in 2
dimensions, in this way a 2 dimensional mesh could be used, reducing the
calculation time extensively.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 8

d

Mesh cell

Halo

Galactic disc

Top view

Mesh point

S

R0
Rc

ª Figure 1 – Mesh layout.

Figure 1 shows the layout of the mesh and how it fits into the galactic model that
will be used in the simulation (a finer mesh than that shown here will be used in
the actual simulations). Note the mesh points lie at the centre of each mesh cell,
the mesh spacing is denoted by d, the length of the mesh edges is S (units will
be discussed later). R0 is the initial galactic disc radius, Rc is the central halo
radius. The halo (shown as a shaded grey sphere in the diagram) will be ignored
for this initial model, but will be included later to see what effect it has.

Units

An important point to consider is the system of units to be used in the simulation,
using SI units would result in very large numbers being used as a typical galaxy
has a radius of about 6x1020 metres. It is better programming practice to scale
the units so they are closer to unity, this is because it reduces the truncation
error involved in storing numbers and also makes the numbers easier to deal
with from the point of view of the user.

A more appropriate system would be to use kiloparsecs as the length unit, with
solar masses and years as the mass and time units respectively:

Dimension Unit SI Equivalent
Length Kiloparsec (Kpc) 3.08 x1019 m
Mass Solar mass (MSUN) 1.99 x1030 Kg
Time Year 3.16 x107 s

The gravitational constant G has dimensions [L3/MT2], in this unit system its
value becomes G*, given by:

() ()
()

2-1-
SUN

324

319

3027

Year M Kpc 105870.4
1008.3

1099.110155.3*

−×=

×

××
= SIGG

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 9

Programming considerations

In order to perform the simulation, an appropriate computer program needs to
be constructed. The 32 bit Windows platform was chosen because it allows large
amounts of memory to be accessed in continuous blocks2, as well as supporting
multitasking. In this way one part of the program can be dedicated to running
the simulation, while another is outputting the results, and other programs can
be used simultaneously to examine these results. In order to provide graphics
output at a reasonable speed, the Microsoft DirectDraw library was used. This
allows direct access to the screen buffer so pixel values can be placed straight
into display memory from the simulation, bypassing Windows’ slow pixel writing
routines. The C++ language was chosen because it is the most appropriate for
mathematical programming under Windows where speed is of the utmost
importance.

Overall program structure

It was decided to keep the structure of the program fairly simple at first so it
could be thoroughly tested and debugged easily. The program runs under
Windows 95 using full screen mode to display the current state of the simulation.
The simulation routines run in a background thread using the Win32 multi thread
model, this means the system is not tied up when lengthly calculations are being
run, so the program can be more interactive. It also means that all available
processor time is allocated to the calculations when the system is not doing
anything else.

A flowchart showing the structure of the simulation part of the program is shown
in Figure 2, each aspect is also described in detail in this section.

START
Read simulation

parameters from user
input

Set initial positions and
velocities for particles

Increment timestep
counter

Assign particle masses
to mesh cells

Move particle over
timestep

Update particle
velocities using field
from mesh and halo

Calculate field at mesh
points

Output data to screen
and files

STOP

Yes

No

End simulation?

ª Figure 2 – Flowchart showing overview of program operation.

2 In 16 bit systems, memory is accessed in 64KB segments, this slows down execution time if large
amounts of memory are required because the program has to keep flipping between segments in
order to access a large array.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 10

Data storage

The program parameters are stored as global variables, The most important ones
are desrcribed here:

Name C++ Type Dim Description
D Double [T] Timestep
T Integer - Current timestep
N Integer - Number of particles (superstars)
M0 Double [M] Mass of each particle
R0 Double [L] Initial disc radius
VDISP Double [LT-1] Initial velocity dispersion
Mh Double [M] Central halo mass
Rc Double [L] Central halo radius
C Integer - Number of mesh cells along edge
S Double [L] Length of mesh along edge
D Double [L] Mesh spacing

To make it easier to work in 2 dimensions, we define a structure called VECTOR:

VECTOR structure
‘x’ Double X component
‘y’ Double Y component

The particle data is stored in an array of N STAR structures, each STAR structure
contains:

STAR structure
‘r’ VECTOR Position of star
‘V’ VECTOR Velocity of star
‘m’ Double Mass of star
‘c’ Integer Type of star

Storing the mass of each star is unnecessary if all stars have the same mass, as
they will for most of the simulations, but it allows the effect of a mass distribution
to be investigated. The star type can be used to pick out particular stars, stars of
different type will be displayed differently by the output routines.

The mesh is stored as a C by C array of MESHCELL structures, each MESHCELL
structure contains:

MESHCELL structure
‘g’ VECTOR Gravitational field at mesh point
‘m’ Double Total mass in cell

There are also lost of other variables that store other information such as data to
be displayed, file handles and buffers.

When the program starts, it pops up a dialog box to allow program parameters to
be input, this is shown in Figure 3. These values are stored in the variables
described above when the user presses the "run simulation" button and the
program proceeds with the simulation. The user can stop the simulation and
return to this dialog box at any time in order to change values or start over
again.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 11

ª Figure 3 – Parameter input dialog box displayed by
the program.

Field calculations over the mesh

This is one of the most computationally expensive parts of the program - the field
at each mesh point is evaluated by considering contributions from every other
mesh point. First the program loops over the stars array to assign the particle
masses to their nearest grid points, then the program performs two nested loops
over the mesh to calculate the field at each mesh point (u,v) using:

() ()[] () ()[]∑

≠

−+−
−+−

−=
vuyx

yx
vu vyux

vyuxd

Gm

,, 222

,
, ˆˆ

2
3 vug (1)

Where mx,y is the total mass of particles in cell (x,y). The summation is taken
over all mesh points using indices (x,y) but not including the cell x=u and v=y
(the current cell). It was noticed that the – (G/r3)r part of this equation is the
same for pairs of mesh points that have the same x and y displacements, the
calculation would be greatly speeded up by caching these values before the
simulation starts and referring to them in an array. This required two C by C
arrays of double precision variables (one for the u and one for the v component),
which is a lot of extra memory but well worth it for the increase in speed.

It was also noticed that, especially at the start of the simulation, the particles
may only occupy a small proportion of the mesh cells. It is therefore very
wasteful in computer time to keep checking every mesh point for field
contributions when more often than not the contribution will be zero. To improve
this, the program loops over the mesh and stores the u,v co-ordinates of each
cell that contains a particle in another array. The program then loops over this
new array instead of the whole mesh. Again, this uses more memory but was
found to increase the overall speed by over 20% if only half the mesh is being
used.

Updating particle positions and velocities

Next the program loops over the stars array and updates the velocities of each
particle. The new acceleration of each particle can be obtained using the mesh, it
is then trivial to update its velocity:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 12

 vu
t
s

t
s D ,

1 gVV +=+ (2)

Where gu,v is the field in the cell containing the particle s and Vs

t is the particle’s
previous velocity. D is the time-step parameter.

Its new position, rs is then given by:

 t

s
t
s

t
s DVrr +=+1 (3)

The "CheckBounds" subroutine is run to check if the particles are within the
mesh. Particles leaving the mesh cause problems because the forces on them or
their force on other particles can no longer be calculated. Some other simulations
track particles using the PP method if they leave the mesh, but for this model it
was decided to make them "bounce" off the edge of the mesh, i.e. reversing their
velocity perpendicular to the edge that was hit. The optimisations made in the
mesh calculation stage make it possible for much larger meshes to be used so
larger gaps can be left around the simulated disc to allow for any particles flying
off. The program also records the number of edge hits and the mesh usage so
conclusions can be drawn about the accuracy when analysing the output.

Data output

One of the most difficult parts to program is the data analysis and output
routines. This is mainly due to the enormous amount of data the program
produces, exactly what data was relevant had to be decided upon because
outputting all available data would quickly fill up any computer's storage
resources. It was decided to split the output into different files, one for small
amounts of data to be output to continually in order to draw temporal graphs,
and others for large amounts of data such as the entire stars or mesh array, or
pictures of the galaxy at different stages. To the temporal graph file, the program
calculates and outputs the time, mesh status, kinetic, potential and total energy
of the system. Also the radii within which 50%, 90% and 100% of the mass is
contained.

 Less frequently, the program outputs a portion of the star array, the radial
density distribution, and the total field and mass at each mesh point so graphs of
these can be drawn. The program also outputs small bitmap files showing the
star positions, some of which will be used in the results section of this report. The
exact output interval for all this data can be selected by the user in the
parameters dialog box.

Choice of parameters and accuracy

For an initial test of the accuracy of the simulation, the program was set up to
simulate a simple 2-body system, data the Sun and the Earth was used in the
initial conditions. A full description of this investigation can be found in the
December 1999 interim report for this project. By comparing the results with that
obtained using PP methods, and examining the total energy evolution, it was
observed that the accuracy is improved by using larger mesh sizes and smaller
timesteps upto a point.

When using the PM method, the particles behave as if they are smeared out over
a cell. If we are looking to see features such as spiral arms and small structures
developing in the disc, we need to make sure the mesh spacing is less than the
size of these structures. A mesh size of 60x60 Kpc with 100x100 cells was chosen

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY THE MODEL ANDREW WEDGBURY

 13

by careful examination of some typical spiral galaxies. To determine the
timestep, we need to make sure particles do not move too far in one step. About
200 steps per galactic rotation is adequate to ensure this, therefore a timestep of
1 Million Years was chosen, which is about right for a typical galaxy.

In the next section, a simple galactic model will be used to obtain some initial
results using the simulation program.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY A SIMPLE STELLAR DISC ANDREW WEDGBURY

 14

A Simple Stellar Disc
he program will be used to simulate simple discs of stars with
several different initial density distributions. The particle velocities

will be set to just balance the rotation of the disc. The simulation will be
run until the fate of the initial disc is clear. This will allow the program to
be fine-tuned and hopefully give an indication as to how our model can
be improved.

T

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY A SIMPLE STELLAR DISC ANDREW WEDGBURY

 15

Setting up the model

The model used for the simple disc is shown in Figure 4. A value of 15Kpc was
used as the initial disc radius as this is approximately the radius of our galaxy,
thought to be a typical spiral system. A galactic mass of 1x1011 MSUN was used,
which is approximately the mass of the disc of our galaxy.

rR0

µ
disc

galactic disc plane

R0

top view

ª Figure 4 – Galactic model and initial surface density distribution used in this simulation.

For this first simulation, the initial surface density distribution, µ(r), used was:

 () ()
2

0

10 







−=

R
rr µµ (4)

Where µ(0) is the central surface mass density and r is the radial co-ordinate.
This was set up in the “SetInitial” subroutine and used a rejection method
random number generator. The resulting distribution looked like that shown on
the graph in Figure 4, which is thought to be a reasonable estimate of the surface
density distribution of a stellar disc. The particles were assigned a purely
rotational velocity just enough to balance the disc against gravitational collapse.

Results

The program was run for 550 time steps, by which time it was clear that a large
amount of particles had hit the sides of the mesh and the disc had broken up.
The results for this simulation are shown in Figure 5. The last image shows the
disc has split into six large globular structures, which formed at around 350 Myrs
and appear quite stable. There was very little indication of spiral structure, which
would suggest that spiral galaxies do not form with these parameters, although
objects that appear as small elliptical galaxies are readily produced. It must be
emphasised, however, that this is a 2 dimensional model and is not particularly
suitable for simulating elliptical galaxies or globular clusters, as they do not
exhibit the high degree of flattening seen in spiral discs.

Using the numerical output from the program, the kinetic, potential and total
energy for the whole system was plotted against time, shown in Figure 6 (left).
Conservation of energy requires that the total energy of the system remains
constant, so this is a good indication of the accuracy of the simulation. The value
was actually observed to increase by about 18% over the duration of the
simulation, although the particles hitting the sides could account for some of this.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY A SIMPLE STELLAR DISC ANDREW WEDGBURY

 16

0 MYrs

50 MYrs

100 MYrs

150 Myrs

200 MYrs

250 MYrs

300 MYrs

350 Myrs

400 MYrs

450 MYrs

500 MYrs

550 MYrs

ª Figure 5 – Evolution of galactic disc shown at intervals of 50 MYrs, the disc breaks up very rapidly within half a rotation. Note
the particle shown by the blue cross, which can be used to trace the rotation of the disc. The program uses grey-scale to
represent the particle density, with completely black areas being the densest.

Figure 6 (right) shows the radii within which 50% and 100% of the mass of the
system is contained plotted against time. This was seen to increase steadily after
50 Myrs.

-4.0E-03

-3.0E-03

-2.0E-03

-1.0E-03

0.0E+00

1.0E-03

2.0E-03

0 50 100 150 200 250 300 350 400 450 500 550

Time / M Yrs

En
er

gy
 /

J*

Total
Kinetic
Potential

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500 550
Time / M Yrs

R
ad

iu
s

/ K
pc

50% Radius
100% Radius

ª Figure 6 – Evolution of kinetic, potential and total energy (left) and radii within which 50% and 100% of the mass is contained
(right) for initial run with no halo. The energy unit J* corresponds to about 1.90 x10 54 Joules.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY A SIMPLE STELLAR DISC ANDREW WEDGBURY

 17

Improvements

To attempt to improve the model, the initial disc was changed so it was much
denser in the centre. The actual density distribution used was r-1/2, where r < R0.
The simulation was run for 1000 MYrs and the results are shown in Figure 7.

50 MYrs 100 MYrs 150 MYrs 200 MYrs

250 MYrs 300 MYrs 350 MYrs 400 MYrs

450 MYrs 500 MYrs 550 MYrs 600 MYrs

650 MYrs

700 MYrs 750 MYrs 800 MYrs

850 MYrs 900 MYrs 950 MYrs 1000 MYrs

ª Figure 7 – Evolution of galactic disc for second simulation

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY A SIMPLE STELLAR DISC ANDREW WEDGBURY

 18

The disc assumed a’θ’ shape between 200 and 400 MYrs, which then split apart
with arms emerging and hitting the side of the mesh at 550 MYrs. The central
region stayed intact, with arm-like structures trailing as it rotated. The final state
at 1000 MYrs has a vague spiral shape with a large circular cluster orbiting at a
radius of about 25 Kpc. In Figure 8 the energy is plotted against time, revealing a
25% variation in total energy.

-1.2E-02

-1.0E-02

-8.0E-03

-6.0E-03

-4.0E-03

-2.0E-03

0.0E+00

2.0E-03

4.0E-03

0 100 200 300 400 500 600 700 800 900 1000

Time / M Yrs

En
er

gy
 /

J*

Total
Kinetic
Potential

ª Figure 8 – Energy / time graph for second simulation.

It was found that using a larger number of mesh cells could reduce this error.
60x60 cells were used in the last simulation in an attempt to speed up the
calculations, but 100x100 will be used in future simulations.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 19

Disc With Fixed Halo
he last section revealed that a large concentration of mass is
required at the centre of the disc to prevent it from breaking up into

small clusters. Actual galaxies are observed to have a central bulge and a
roughly spherical “ halo” consisting of globular clusters. Several different
models for the halo component will be constructed and tested in this
section.

T

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 20

Uniform density halo

The initial model for this section is shown in Figure 9, with a fixed solid sphere of
uniform density and mass Mh at the centre of the star disc.

rR0

µ

halo
disc

galactic disc plane

R0

Rc

top view

Rc

ª Figure 9 – Galactic model used in this simulation, including a fixed, uniform density, spherical halo.

The gravitational field at r due to a solid sphere is given by:













<
−

>
−

=

c
c

h

c
h

sphere

Rr
R

rGM

Rr
r
GM

for ˆ

for ˆ

3

2

r

r

g (1)

Where Rc is the radius of the sphere and Mh is its mass. The function
“CalcHaloField” was added to the program to calculate this, and the equations of
motion were adjusted to include the extra field due to the halo.

The initial disc radius was kept at 15 Kpc and the halo radius was set to one third
of this, which is approximately the halo size in our galaxy. Little is known about
the mass of galactic halos, so values of 1x, 5x and 10x the disc mass were tried.

Initial Results

The results are shown side by side for comparison in Figure 10. The 1x disc mass
halo evolves in much the same way as the last simulation in the last section, but
a more pronounced spiral system is visible. This expanded and hit the sides of
the mesh at 500 MYrs, where the simulation was ended. In the other two
simulations, however, the disc stars stayed well within the mesh and were run to
650 MYrs. A well-defined two-arm spiral system was seen to develop in the 5x
disc mass halo system at about 400 MYrs, but seemed to disappear at 650 MYrs.
The particles in the 10x disc mass halo system were more confined to the centre,
but did produce small spiral arms, which were visible between 250 and 450 MYrs.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 21

Halo mass
Time

1x disc mass (1x1011 MSUN) 5x disc mass (5x1011 MSUN) 10x disc mass (1x1012 MSUN)

50
MYrs

100
MYrs

150
MYrs

200
MYrs

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 22

250
MYrs

300
MYrs

350
MYrs

400
MYrs

450
MYrs

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 23

500
Myrs

(Disc broken up)

550
Myrs

600
Myrs

650
Myrs

ª Figure 10 – Evolution of galactic discs for different values of the halo mass. The disc mass was kept constant at 1x10 11 MSUN.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 24

Total energy variation

-3.5E-02

-3.0E-02

-2.5E-02

-2.0E-02

-1.5E-02

-1.0E-02

-5.0E-03

0.0E+00
0 50 100 150 200 250 300 350 400 450 500 550 600 650

Time / M Yrs

En
er

gy
 /

J*

1x Msun
5x Msun
10x Msun

ª Figure 11 – Total energy / time plots for different halo masses.

To assess the accuracy of these simulations, the total energy against time plots
are shown in Figure 11. The total energy of the systems vary by about the same
absolute amount, but curious oscillations are observed in the 5x and 10x cases.
One explanation could be the error due to the mesh approximation, with particles
moving faster in the systems with heavier halos.

Density and velocity distributions

The density and velocity vs. radius graphs for the three different halo masses are
shown in Figure 12. Here we can see that the maximum velocity in the 10x
system is about three times greater than the 1x system. The maximum velocity
occurs at the halo radius, where the field due to the halo is strongest. Inside the
halo, the velocity varies proportionally to radius. Outside the velocity decreases
gradually, except in the 1x case where it dips and rises again at the disc radius.

Figure 13 shows the density and velocity against radius plots at 450 MYrs, in all
cases the particles have spread out to some degree, enough to reach the edge of
the mesh in the 1x system. The velocity distribution appears erratic in the 1x
system, but in the 5x and 10x systems it still seems to follow a trend similar to
that at t=0, with some dispersion.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 25

1x disc mass halo, t=0

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

0 5 10 15 20
Radius / Kpc

Su
rf

ac
e

m
as

s
de

ns
ity

 /
(M

su
n

/ K
pc

²)

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

3.5E-07

Pa
rt

ic
le

 V
el

oc
ity

 K
pc

 /
Yr

5x disc mass halo, t=0

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

0 5 10 15 20
Radius / Kpc

Su
rf

ac
e

m
as

s
de

ns
ity

 /
(M

su
n

/ K
pc

²)

0.0E+00

1.0E-07

2.0E-07

3.0E-07

4.0E-07

5.0E-07

6.0E-07

7.0E-07

8.0E-07

Pa
rt

ic
le

 V
el

oc
ity

 K
pc

 /
Yr

10x disc mass halo, t=0

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

0 5 10 15 20
Radius / Kpc

Su
rf

ac
e

m
as

s
de

ns
ity

 /
(M

su
n

/ K
pc

²)

0.0E+00

2.0E-07

4.0E-07

6.0E-07

8.0E-07

1.0E-06

1.2E-06
Pa

rt
ic

le
 V

el
oc

ity
 K

pc
 /

Yr

ª Figure 12 - Plots of disc surface mass density and total velocity against r for the different halo masses at t=0. The density

distribution is the same for each, but the velocity increases with halo mass, this is the initial azimuthal velocity assigned to the
particles to balance the gravitational force. Note the discontinuity in velocity at r=5 Kpc due to the halo, which is modelled as a
solid sphere of constant density.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 26

1x disc mass halo, t=450 MYrs

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

8.0E+08

0 5 10 15 20 25 30 35 40 45 50
Radius / Kpc

Su
rf

ac
e

m
as

s
de

ns
ity

 /
(M

su
n

/ K
pc

²)

0.0E+00

1.0E-07

2.0E-07

3.0E-07

4.0E-07

5.0E-07

6.0E-07

Pa
rt

ic
le

 V
el

oc
ity

 K
pc

 /
Yr

5x disc mass halo, t=450 MYrs

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

0 5 10 15 20 25 30 35 40 45 50
Radius / Kpc

Su
rf

ac
e

m
as

s
de

ns
ity

 /
(M

su
n

/ K
pc

²)

0.0E+00
1.0E-07
2.0E-07
3.0E-07
4.0E-07
5.0E-07
6.0E-07
7.0E-07
8.0E-07
9.0E-07

Pa
rt

ic
le

 V
el

oc
ity

 K
pc

 /
Yr

10x disc mass halo, t=450 MYrs

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

0 5 10 15 20 25 30 35 40 45 50
Radius / Kpc

Su
rf

ac
e

m
as

s
de

ns
ity

 /
(M

su
n

/ K
pc

²)

0.0E+00

2.0E-07

4.0E-07

6.0E-07

8.0E-07

1.0E-06

1.2E-06
Pa

rt
ic

le
 V

el
oc

ity
 K

pc
 /

Yr

ª Figure 13 – As Figure 12 but at t=450 MYrs.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 27

The most prominent spiral structure was observed with the 5x disc mass halo, an
example of which is shown in Figure 14 below.

ª Figure 14 – Program screen shot for the 5x halo mass system at 505 MYrs, showing a well defined two-arm spiral structure.

(The image has been inverted and converted to grey scale for clarity)

Varying the halo radius

Larger halos were tried, the results for a 10 Kpc radius halo (2/3 of the disc
radius) are shown in Figure 15. Comparing this with the 5 Kpc halo of the same
mass (shown in Figure 10), we can see that less expansion and break-up is seen
with the larger radius halo.

Some galaxies are observed to have halos smaller than 1/3 of the disc radius.
The effect of reducing the halo size was investigated, although using very small
halos was found to cause problems because particles in the centre of the disc
were given extremely high velocities.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 28

50 MYrs 100 MYrs 150 MYrs 200 MYrs

250 MYrs 300 MYrs 350 MYrs 400 MYrs

450 MYrs 500 MYrs 550 MYrs 600 MYrs

650 MYrs 700 MYrs 750 MYrs 800 MYrs

850 MYrs 900 MYrs 950 MYrs 1000 MYrs

ª Figure 15 – Evolution of galactic disc with a 10 Kpc halo with 1x disc mass

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 29

ª Figure 16 – High-resolution view of the galaxy from Figure 15 at 1000 MYrs showing more detail in the central regions. The

magnitude of the gravitational field is shown as levels of grey.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 30

Non-uniform density halo

A better model for a galactic halo would involve the density decreasing gradually
at higher radii, much like a globular cluster or elliptical galaxy. The observed
luminosity of most elliptical galaxies falls off approximately exponentially with
radius, so a new halo model will be constructed with a density distribution:

 ()ch Rr−∝ expρ (0)

If we require that the total mass of the halo be Mh, then this becomes:

 ()c
c

h
h Rr

R
M

−= exp
8 3π

ρ (0)

The gravitational field due to this
density distribution looks like Figure
17.

The “CalcHaloField” function in the
program was updated to use this type
of halo. See appendix for the
complete program listing.

A number of simulations with
different values of Mh and Rc were
tried using this halo model. It was
found that small values of Rc could be
used without introducing instabilities
into the simulation.

Results

The results for a Rc=5 Kpc halo with masses 1x, 5x and 10x the disc mass were
tried as in the previous section, and the results were found to be quite similar.
Next, Rc was reduced to 1 Kpc, giving a smaller halo, and masses of 1x, 2.5x, 5x
and 10x the disc mass were tried. The results for these simulations are shown
side by side in Figure 18. In the 10x case, the disc did not seem to expand as it
did with the others so it was run again on a smaller mesh size (with the same
number of cells) to obtain increased accuracy.

Figure 19 shows the variation of total energy and galactic radius over time for
these four simulations. It is interesting to see that the 10x halo system is the
most accurate in terms of conservation of energy and also settles down to a fairly
constant radius over time.

 r

g
r

ª Figure 17 – Field due to exponential density halo.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 31

Halo mass
Time 1x disc mass

(1x1011 MSUN)
2.5x disc mass
(2.5x1011 MSUN)

5x disc mass
(5x1011 MSUN)

10x disc mass
(1x1012 MSUN)

50
MYrs

100
MYrs

150
MYrs

200
MYrs

250
MYrs

300
MYrs

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 32

350
MYrs

400
MYrs

450
MYrs

500
Myrs

550
Myrs

600
Myrs

ª Figure 18 – Evolution of galactic discs for different values of the halo mass for small exponential halos. The disc mass was

kept constant at 1x1011 MSUN. The 10x disc mass simulation was done with a smaller mesh because it did not expand from its
original radius to a great extent, this is why is appears bigger in the illustration.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY DISC WITH FIXED HALO ANDREW WEDGBURY

 33

-3.0E-02

-2.5E-02

-2.0E-02

-1.5E-02

-1.0E-02

-5.0E-03

0.0E+00
0 100 200 300 400 500 600

Time / M Yrs

En
er

gy
 /

J*

1x
2.5x
5x
10x

10

12

14

16

18

20

22

24

0 100 200 300 400 500 600
Time / M Yrs

R
ad

iu
s

/ K
pc

1x
2.5x
5x
10x

ª Figure 19 – Total energy (top) and galaxy radius (bottom) vs. time plots for small exponential halos of 1, 2.5, 5 and 10 times

the disc mass.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY CONCLUSIONS ANDREW WEDGBURY

 34

Conclusions
he results obtained by the simulation will be analysed and compared
to existing galactic images in an attempt to ascertain the validity of

the models used.
T

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY CONCLUSIONS ANDREW WEDGBURY

 35

The initial galactic model was a disc containing N particles, each representing a
large number of stars. Initially the particles were given just enough rotational
velocity to balance the disc, this was confirmed by the disc radius staying
constant for approximately 150 MYrs. The disc was then seen to break up into
several elliptical clusters, which appeared to be stable against further break up. A
3-dimensional model of this system would probably confirm that globular clusters
and elliptical galaxies can be formed in this way, however, the flattened disc
systems seen in spiral galaxies was the primary focus of this project.

Putting a greater proportion of the disc mass in the centre was seen to increase
the stability of the disc. In an attempt to model the halos seen in most spiral
galaxies, the field due to a fixed solid sphere of uniform density was added to the
model. By increasing the mass of this halo, the disc could be prevented from
breaking up. Different halo masses were tried, masses of around 5x the disc
mass were found to produce the most prominent spiral structure. A halo with
density decreasing exponentially with radius was then used and produced better
results for more centrally condensed halos.

When spiral structures were observed, they were seen to form quickly, within one
disc rotation. They were also relatively short-lived, none were seen to last for
more than about half a billion years, whereas spiral structures in real galaxies
must have lasted for twenty times as long if our theories on the age of the
universe are correct.

ª Figure 20 – Galaxy M81, Sb type spiral with a large diffuse halo

None of the spirals produced were as regular as that exhibited by most of the
spiral galaxies that we can observe, such as M81 (see Figure 20). Real spiral
galaxies seem to have no problem retaining a regular, well defined structure,

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY CONCLUSIONS ANDREW WEDGBURY

 36

even in the event of having large companion galaxies, such as M51 in which
would exert a considerable gravitational force on its neighbour.

ª Figure 21 – (Main image) Galaxy M51, Sc type spiral with small halo and companion galaxy, (inset) computer simulation

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY CONCLUSIONS ANDREW WEDGBURY

 37

ª Figure 22 – (top) Galaxy M101, Sc type spiral with small halo (bottom) computer simulation

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY CONCLUSIONS ANDREW WEDGBURY

 38

There is, however an extremely wide range of galaxy types observable, and some
comparisons can be made with the results obtained, see Figure 21 and Figure 22.

ª Figure 23- Simulation result also comparable to observable galaxies

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY CONCLUSIONS ANDREW WEDGBURY

 39

ª Figure 24- Another result comparable to observable galaxies.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY CONCLUSIONS ANDREW WEDGBURY

 40

A large number of simulations were performed with a variety of initial conditions,
too numerous to describe in detail here. An interesting result was obtained using
a highly elliptical initial disc, and produced the output shown in Figure 25, but
unfortunately time did not allow the investigation to go any further than this.

ª Figure 25- Initial result obtained using a highly elliptical initial disc

This is interesting because the spiral structure seems to be formed by bands of
particles flowing around the system in different orbits, the spiral was seen to last
approximately twice as long as in the previous models. Universe simulations have
been performed, such as that shown in Figure 26, and seem to show galaxies
forming when large amount of matter condense to form a halo, with elongated
structures between them. It may be these that play some part in the forming of
stable spiral arms.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY CONCLUSIONS ANDREW WEDGBURY

 41

ª Figure 26- Results of a universe simulation, from [1]

It is clear that there is a lot we do not yet understand about galactic formation.
Observations are of little use on our short time scales, except perhaps with more
powerful telescopes that can see galaxies earlier on in their evolution. The easiest
and quickest way to rigorously test such a theory is by a computer simulation
such as this one. Even though nothing new has been discovered here (similar
results were observed in 1968 by Hohl [6]), the development of better
simulations, galactic theories and models will bring us one step closer to
understanding how galaxies are formed.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 42

Appendix

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 43

Program listing

galaxy.cpp
// --
// SIMULATION OF A GALAXY
// Using Nearest Grid Point / Particle-Mesh method
// --
//
// galaxy.cpp
//
// Written by Andrew Wedgbury
// Copyright ©1999
// All Rights Reserved
//

#include <windows.h>
#include <commctrl.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <io.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <ddraw.h>
#pragma hdrstop

#include "resource.h"

//
// WINDOWS INTERFACE DATA
//
HINSTANCE hInst; // INSTANCE HANDLE
HWND hDispWin,hControlWin; // WINDOW HANDLES
HANDLE hCalcThread; // CALCULATION THREAD HANDLE

//
// SIMULATION DATA TYPES
//
typedef struct tagVECTOR // CARTESIAN VECTOR
{ double x; // X-COMPONENT
 double y; // Y-COMPONENT
} VECTOR;

typedef struct tagMESHCELL // MESH CELL STRUCTURE
{ VECTOR g; // GRAVITATIONAL FIELD IN X AND Y [L/TT]
 double m; // TOTAL MASS IN CELL [M]
} MESHCELL;

typedef struct tagSTAR // STAR STRUCTURE
{ VECTOR r; // POSITION OF STAR [L]
 VECTOR V; // VELOCITY OF STAR [L/T]
 double m; // MASS OF STAR [M]
 int c; // TYPE OF STAR
} STAR;

typedef struct tagPIXEL // PIXEL OR GENERAL int X,Y STRUCTURE
{
 WORD x,y;
} PIXEL;

//
// PHYSICAL CONSTANTS AND UNITS
//
#define M (double)1.99e30 // Mass unit (solar mass)
#define L (double)3.08e19 // Length unit (Kiloparsec)
#define T (double)3.15569259747e7 // Time unit (Year)
const double G = 6.67259e-11 * T*T*M/(L*L*L); // Gravitational constant [LLL/TTM]
#define PI 3.14159265359 // PI
const double TWOPI =2.0*PI; // PRECALCULATED 2*PI

//
// PARTICLE DATA
//
#define NMAX 250000 // MAXIMUM NUMBER OF STARS
int N = 50000; // NUMBER OF STARS IN SIMULATION
double D = 1.0e6; // TIMESTEP [T]
DWORD t = 0; // TIME [steps]
double R0 = 15.0; // INITIAL DISK RADIUS [L]

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 44

double Rc = R0/4.0; // INITIAL CENTRAL HALO RADIUS [L]
double MGX = 1e11; // MASS oF GALAXY [M]
double M0 = MGX/N; // STAR MASS [M]
double Mh = 0; // CENTRAL HALO MASS [M]
double VDISP = 0.0e-8; // VELOCITY DISPERSION [L/T]
STAR stars[NMAX]; // STARS ARRAY
int nDiscType = 5; // INITIAL DISC TYPE (see SetInitial)
int nHaloType = 0; // HALO TYPE (see CalcHaloField)

//
// MESH DATA
//
#define CMAX 256 // MAXIMUM EDGE DIMENSION (CELLS)
int C = 60; // MESH EDGE DIMENSION (CELLS)
double S = 60.0; // MESH SIZE [L]
double d = S/C; // MESH SPACING [L]
double CM = (d*C/2); // CENTER OF MESH [L]
MESHCELL mesh[CMAX][CMAX]; // MESH ARRAY
double RxCache[CMAX][CMAX]; // ARRAY FOR CACHED Rx VALUES
double RyCache[CMAX][CMAX]; // ARRAY FOR CACHED Ry VALUES
PIXEL meshused[CMAX*CMAX]; // STORES COORDINATES OF MESH CELLS BEING USED

//
// FILE OUTPUT DATA
//
int nEdgeCollisions=0; // COUNTER FOR EDGE COLLISIONS
int nCellsUsed=0; // COUNTER FOR NUMBER OF CELLS OCCUPIED
char szBuffer[512]; // TEXT BUFFER FOR O/P

char szDataFile[MAX_PATH]; // DATA O/P FILE NAME
double OPINTDATA = 0.0e7; // O/P INTERVAL FOR CONFIG DATA [T] (0 to disable)
int hDataFile = NULL; // DATA O/P FILE HANDLE
int hGraphFile = NULL;

double OPINTBIN = 0.0e6; // O/P INTERVAL FOR BINARY DATA [T] (0 to disable)
int hBinFile = NULL; // BINARY O/P FILE HANDLE
PIXEL binout[NMAX]; // BINARY O/P BUFFER

//
// GRAPHICS OUTPUT DATA
//
int RESX = 1024; // SCREEN X RESOLUTION [pixels]
int RESY = 768; // SCREEN Y RESOLUTION [pixels]
int WINDOWX = RESY-20; // O/P WINDOW X DIMENSION [pixels]
int WINDOWY = RESY-20; // O/P WINDOW Y DIMENSION [pixels]
int SIDEX = RESY; // X POSITION OF SIDE INFO BAR [pixels]
double xs = WINDOWX/S; // X SCALE [pixels/L]
double ys = WINDOWY/S; // Y SCALE [pixels/L]
int xt = 0; // X TRANSFORM
int yt = 0; // Y TRANSFORM
double vmax = 0; // SCALE FOR VELOCITY GRAPH
double dmax = 0; // SCALE FOR DENSITY GRAPH
double dbins[400]; // RADIAL DENSITY ARRAY
double fmax = 0; // SCALE FOR FIELD COLOURING
#define NIS 2 // NUMBER OF INDICATOR STARS
VECTOR Ir[NIS]; // INDICATOR STAR POSITIONS
double nRevs[NIS]; // NUMBER OF REVOLUTIONS OF INDICATORS
double Ep = 0.0; // TOTAL POTENTIAL ENERGY ACCUMULATOR
double Ek = 0.0; // TOTAL KINETIC ENERGY ACCUMULATOR

LPDIRECTDRAW lpDD; // DirectDraw OBJECT
LPDIRECTDRAWSURFACE lpDDSPrimary; // DirectDraw PRIMARY SURFACE
LPDIRECTDRAWSURFACE lpDDSBack; // DirectDraw BACK SURFACE
DWORD dwS=0,dwF=0; // DirectDraw INIT DATA
HFONT hBigFont; // FONT USED FOR PROGRAM TITLE
HFONT hSmallFont; // FONT USED FOR GENERAL TEXT

//
// SIMULATION CONTROL FLAGS
//
BOOL bDrawField = 0; // DRAW FIELD FLAG
BOOL bDrawStars = 1; // DRAW STARS FLAG
BOOL bDrawText = 1; // DRAW TEXT PANEL FLAG
BOOL bDrawIndic = 1; // DRAW INDICATOR STARS FLAG
BOOL bDrawAxes = 1; // DRAW AXES FLAG
BOOL bDrawHalo = 0; // DRAW HALO FLAG
BOOL bPaused = 0; // PAUSE / GO FLAG

//
// FUNCTION PROTOTYPES
//
DWORD _cdecl CalcThread(LPDWORD);
void Timestep(void);
void CalcMesh(void);
void CheckBounds(int);
void OutputData(void);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 45

void WriteDataFile(void);
void SetInitial(void);
void CalcHaloField(double,double,VECTOR*);
double CalcEnergy(int);
void InitRCache(void);
double LookupRx(int,int);
double LookupRy(int,int);
double radius(double,double);
inline void WDXSetPixel(LPDDSURFACEDESC lpddsd,int sx,int sy,int red,int green,int blue);
inline void WDXIncPixel(LPDDSURFACEDESC lpddsd,int sx,int sy,int red,int green,int blue);
void PaintText(HDC hDC,int x,int y,LPCSTR text,COLORREF col);

//
// THREAD: CalcThread
// Performs calculation in background
//
DWORD _cdecl CalcThread(LPDWORD lpdwParam)
{
 while (1)
 {
 Sleep(0); // Relinquish time slice if required by system
 if (!bPaused)
 Timestep(); // Run one timestep if not paused
 }
 return 0;
}

//
// FUNCTION: Timestep
// Performs one timestep of the simulation
//
void Timestep(void)
{
 //
 // Save calc start time
 //
 dwS= GetTickCount();

 //
 // Set initial conditions if t=0
 //
 if (t==0)
 {
 SetInitial();
 OutputData();
 }

 //
 // Calculate Gravitational field over Mesh
 //
 else
 CalcMesh();

 //
 // Increment timestep counter
 //
 t++;

 //
 // Loop over all stars
 //
 int is; Ek=0.0;
 for (is=0; is<N; is++)
 {
 //
 // Check star is within mesh
 //
 CheckBounds(is);

 //
 // Get nearest grid point
 //
 int cx = (int)(stars[is].r.x / d);
 int cy = (int)(stars[is].r.y / d);

 if (((cx >= 0) && (cx < C)) && ((cy >= 0) && (cy < C)))
 {
 VECTOR g;
 CalcHaloField(stars[is].r.x,stars[is].r.y,&g);

 //
 // Update particle velocities from halo and mesh
 //
 stars[is].V.x += (mesh[cx][cy].g.x + g.x) * D;
 stars[is].V.y += (mesh[cx][cy].g.y + g.y) * D;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 46

 Ek += CalcEnergy(is);
 }

 //
 // Update particle positions
 //
 stars[is].r.x += stars[is].V.x *D;
 stars[is].r.y += stars[is].V.y *D;
 }

 //
 // Save calc end time
 //
 dwF = GetTickCount();

 //
 // Output data to screen and files
 //
 OutputData();
}

//
// FUNCTION: random
// Returns a random integer between 0 and max
// (note: has a resolution of 32768)
//
inline int random(int max)
{
 return MulDiv(rand(),max,32768);
}

//
// FUNCTION drandom
// Returns a random double between 0 and max
//
inline double drandom(double max)
{
 return max * rand()/32768.0;
}

//
// FUNCTION gausdev
// Returns a gaussian deviate using Box Muller algorithm
//
double gausdev(void)
{
 double rsq,x,y;

 do
 {

 x = drandom(2.0)-1.0;
 y = drandom(2.0)-1.0;
 rsq = x*x + y*y;

 }
 while ((rsq >= 1.0) || (rsq == 0.0));

 return x*sqrt(-2.0*log(rsq)/rsq);
}

//
// FUNCTION: radius
// Converts x,y to r using pythagoras' theorem
//
inline double radius(double x, double y)
{
 return sqrt((x*x)+(y*y));
}

//
// INITIAL CONDITIONS TEMPOARY DATA
// (Too big for local storage)
//
double r[NMAX];
double theta[NMAX];

//
// FUNCTION: SetInitial
// Setup initial conditions for stars
//

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 47

void SetInitial(void)
{
 int is;
 double u;

 //
 // Assign variables
 //
 M0 = (double)MGX / N;

 //
 // Open files
 //
 if (hDataFile)
 _close(hDataFile);
 if (hBinFile)
 _close(hBinFile);
 if (hGraphFile)
 _close(hGraphFile);

 char szFileName[MAX_PATH];
 if (OPINTDATA)
 lstrcpy(szFileName,szDataFile);
 lstrcat(szFileName,"_t.csv");
 hDataFile = _open(szFileName,_O_WRONLY | _O_CREAT | _O_TRUNC,_S_IREAD | _S_IWRITE);
 if (OPINTBIN)
 {
 lstrcpy(szFileName,szDataFile);
 lstrcat(szFileName,"_g.csv");
 hGraphFile = _open(szFileName,_O_WRONLY | _O_CREAT | _O_TRUNC,_S_IREAD | _S_IWRITE);
 }

 //
 // Set initial star postions
 //
 for (is=0; is<N; is++)
 {
 //
 // Star mass & type
 //
 stars[is].m = M0;
 stars[is].c = 0;

 //
 // Generate r
 //
 switch (nDiscType)
 {
 case 1: // UNIFORM SPATIAL DISTRIBUTION
 r[is] = R0*sqrt(drandom(1));
 break;

 case 2: // UNIFORM r
 r[is] = drandom(R0);
 break;

 case 3: // RING
 r[is] = R0;
 break;

 case 4: // GAUSSIAN DENSITY DISTRIBUTION
 do
 {
 double rand = gausdev();
 r[is] = (R0/4.0)*sqrt(sqrt(rand*rand));
 } while (r[is] > R0);
 break;

 case 5: // µ = µ0 sqrt(1 - (r/R)²)

 do
 {
 u = drandom(1.0);
 r[is] = drandom(1.0);
 } while (u > sqrt(1.0-(r[is]*r[is])));
 r[is] = R0*sqrt(r[is]);
 break;
 }

 //
 // Generate random theta between 0 and 2*PI
 //
 theta[is] = drandom(TWOPI);

 //
 // Set star cartesian position from r and theta
 //
 stars[is].r.x = CM + (r[is] * cos(theta[is]));

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 48

 stars[is].r.y = CM + (r[is] * sin(theta[is]));
 }

 //
 // Centre star
 //
 theta[0]=0;
 r[0]=0;
 stars[0].r.x = CM;
 stars[0].r.y = CM;
 stars[0].c = 3;

 //
 // Indicator stars
 //
 theta[1]=-PI/2;
 r[1]=Rc;
 stars[1].r.x = Ir[0].x = CM;
 stars[1].r.y = Ir[0].y = CM-r[1];
 stars[1].c = 3;

 theta[2]=-PI/2;
 r[2]=R0;
 stars[2].r.x = Ir[1].x = CM;
 stars[2].r.y = Ir[1].y = CM-r[2];
 stars[2].c = 3;

 //
 // Calculate initial forces to get balancing velocity
 //
 CalcMesh();

 for (is=0; is<N; is++)
 {
 int cx = (int)(stars[is].r.x / d);
 int cy = (int)(stars[is].r.y / d);

 //
 // Check particle is within mesh
 //
 if (((cx >= 0) && (cx < C)) && ((cy >= 0) && (cy < C)))
 {
 //
 // Calculate required centripetal velocity and set
 //
 VECTOR g;
 // BALANCE DISC
 CalcHaloField(stars[is].r.x,stars[is].r.y,&g);
 double a = radius(g.x+mesh[cx][cy].g.x,g.y+mesh[cx][cy].g.y);
 double F = 1.0 * sqrt(a*r[is]);

 stars[is].V.x = F * -sin(PI-theta[is]);
 stars[is].V.y = F * -cos(PI-theta[is]);
 }

 //
 // Add gaussian velocity dispersion if required
 //
 if (VDISP)
 {
 stars[is].V.x += (r[is]/R0)* VDISP * gausdev();
 stars[is].V.y += (r[is]/R0)* VDISP * gausdev();
 }
 }
}

//
// FUNCTION: CalcHaloField
// Calculate field due to halo
//
void CalcHaloField(double x,double y,VECTOR* g)
{
 g->x=0;
 g->y=0;

 if (Mh==0.0 || r<d)
 return;

 double R = radius(x-CM,y-CM);
 double f = 0.0;
 double Ru = (x-CM) / R;
 double Rv = (y-CM) / R;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 49

 switch (nHaloType)
 {
 case 1:
 if (R > Rc) // SOLID SPHERE
 f = -G*Mh / (R*R);
 else
 f = -G*Mh*R / (Rc*Rc*Rc);
 break;

 case 2: // EXPONENTIAL DENSITY SPHERE
 double t1 = Rc*Rc;
 double t4 = R*R;
 double t7 = exp(-R/Rc);
 f = 1/t4*Mh*(t7*t4+2.0*Rc*t7*R+2.0*t1*t7-2.0*t1)/t1*G/2.0;
 break;
 }
 g->x = Ru * f;
 g->y = Rv * f;
}

//
// FUNCTION CalcMesh
// Calculate field at mesh points
//
void CalcMesh()
{
 int iu,iv,ix,iy,is;

 // Zero radial density array
 ZeroMemory(&dbins,sizeof(dbins));
 Ep = 0.0;

 // Reset cells used counter
 nCellsUsed=0;

 //
 // Set all mesh cells to zero mass and field
 //
 for (iu=0; iu<C; iu++)
 {
 for (iv=0; iv<C; iv++)
 {
 mesh[iu][iv].m = 0;
 mesh[iu][iv].g.x = 0;
 mesh[iu][iv].g.y = 0;
 }
 }

 //
 // Get mass of stars in each mesh cell
 //
 for (is=0; is<N; is++)
 {
 //
 // Get mesh cell containing star
 //
 int cx = (int)(stars[is].r.x / d);
 int cy = (int)(stars[is].r.y / d);

 //
 // Make sure star is inside mesh
 //
 if (((cx >= 0) && (cx < C)) && ((cy >= 0) && (cy < C)))
 {
 // Add star on to mesh cell
 mesh[cx][cy].m += stars[is].m;

 // Add star on to radial density array
 dbins[(int)(400*radius(stars[is].r.x-CM,stars[is].r.y-CM)/S)] +=
 stars[is].m;
 }
 }

 //
 // Run over mesh and save list of cells containing stars
 // (this saves time and allows bigger meshes)
 //
 for (iu=0; iu<C; iu++) // Loop over u
 {
 for (iv=0; iv<C; iv++) // Loop over v
 {
 if (mesh[iu][iv].m || bDrawField)
 {

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 50

 meshused[nCellsUsed].x = iu;
 meshused[nCellsUsed].y = iv;
 nCellsUsed++;
 }
 }
 }

 //
 // Calculate field at each (used) mesh point due to all other (used) mesh points
 //
 for (ix=0; ix<nCellsUsed; ix++)
 {
 for (iy=0; iy<nCellsUsed; iy++)
 {
 // Don't include (u,v) cell
 if (!((meshused[iy].x==meshused[ix].x) && (meshused[iy].y==meshused[ix].y)))
 {
 //
 // Calc components of field at (u,v) due to mass at (x,y) and add on
 //
 mesh[meshused[ix].x][meshused[ix].y].g.x +=
 mesh[meshused[iy].x][meshused[iy].y].m *
 LookupRx(meshused[iy].x-meshused[ix].x,
 meshused[iy].y-meshused[ix].y);

 mesh[meshused[ix].x][meshused[ix].y].g.y +=
 mesh[meshused[iy].x][meshused[iy].y].m *
 LookupRy(meshused[iy].x-meshused[ix].x,
 meshused[iy].y-meshused[ix].y);

 //
 // Calc potential energy
 //
 Ep += -G * mesh[meshused[ix].x][meshused[ix].y].m *
 mesh[meshused[iy].x][meshused[iy].y].m /
 radius(meshused[iy].x-meshused[ix].x,
 meshused[iy].y-meshused[ix].y);
 }
 }
 }

 //
 // Calc potential energy due to halo
 //
 for (is=0; is<N; is++)
 {
 VECTOR g;
 CalcHaloField((double)stars[is].r.x,(double)stars[is].r.y,&g);
 Ep += -stars[is].m * radius(g.x,g.y) *
 radius((double)stars[is].r.x-CM,(double)stars[is].r.y-CM);
 }
}

//
// FUNCTION: CheckBounds
// checks to see if particle is in mesh,
// if not, its velocity is reversed.
//
inline void CheckBounds(int is)
{
 if ((stars[is].r.x <= 0) && (stars[is].V.x < 0))
 {
 nEdgeCollisions++;
 stars[is].V.x *= -1;
 }

 if ((stars[is].r.y <= 0) && (stars[is].V.y < 0))
 {
 nEdgeCollisions++;
 stars[is].V.y *= -1;
 }

 if ((stars[is].r.x >= S) && (stars[is].V.x > 0))
 {
 nEdgeCollisions++;
 stars[is].V.x *= -1;
 }

 if ((stars[is].r.y >= S) && (stars[is].V.y > 0))
 {
 nEdgeCollisions++;
 stars[is].V.y *= -1;
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 51

//
// FUNCTION: WDXSetPixel
// Sets pixel on DD3 Surface
//
void WDXSetPixel(LPDDSURFACEDESC lpddsd,int sx,int sy,int red,int green,int blue)
{
// sx+=10; sy+=10;
// if (((sx>0) && (sy>0)) && ((sx<lpddsd->dwWidth) && (sy<lpddsd->dwHeight)))
 if (((sx>0) && (sy>0)) && ((sx<RESX) && (sy<RESY)))
 {
 UINT offs= (sy*lpddsd->lPitch)+(4*sx);
 ((BYTE *)lpddsd->lpSurface)[offs] = blue;
 ((BYTE *)lpddsd->lpSurface+1)[offs] = green;
 ((BYTE *)lpddsd->lpSurface+2)[offs] = red;
 }
}

//
// FUNCTION: WDXIncPixel
// Increments pixel color value on DD3 Surface
//
void WDXIncPixel(LPDDSURFACEDESC lpddsd,int sx,int sy,int red,int green,int blue)
{
// sx+=10; sy+=10;
// if (((sx>0) && (sy>0)) && ((sx<lpddsd->dwWidth) && (sy<lpddsd->dwHeight)))
 if (((sx>0) && (sy>0)) && ((sx<RESX) && (sy<RESY)))
 {
 UINT offs= (sy*lpddsd->lPitch)+(4*sx);
 if (((BYTE *)lpddsd->lpSurface)[offs] + blue < 255)
 ((BYTE *)lpddsd->lpSurface)[offs] += blue;
 else
 ((BYTE *)lpddsd->lpSurface)[offs] = 255;

 if (((BYTE *)lpddsd->lpSurface+1)[offs] + green < 255)
 ((BYTE *)lpddsd->lpSurface+1)[offs] += green;
 else
 ((BYTE *)lpddsd->lpSurface+1)[offs] = 255;

 if (((BYTE *)lpddsd->lpSurface+2)[offs] + red < 255)
 ((BYTE *)lpddsd->lpSurface+2)[offs] += red;
 else
 ((BYTE *)lpddsd->lpSurface+2)[offs] = 255;
 }
}

//
// FUNCTION: PaintText
// Paints text
//
void PaintText(HDC hDC,int x,int y,LPCSTR text,COLORREF col)
{
 SetTextColor(hDC,col);
 ExtTextOut(hDC,x,y,NULL,NULL,text,lstrlen(text),(LPINT)NULL);
}

//
// FUNCTION: OutputData
// Send data to screen and files
//
void OutputData(void)
{
 int is;

 //
 // Calculate number of revolutions of indicator stars
 //
 for (is=0; is<NIS; is++)
 {
 if (Ir[is].x<CM && stars[is+1].r.x>CM)
 nRevs[is] += 0.25;
 if (Ir[is].x>CM && stars[is+1].r.x<CM)
 nRevs[is] += 0.25;
 if (Ir[is].y<CM && stars[is+1].r.y>CM)
 nRevs[is] += 0.25;
 if (Ir[is].y>CM && stars[is+1].r.y<CM)
 nRevs[is] += 0.25;
 Ir[is].x = stars[is+1].r.x;
 Ir[is].y = stars[is+1].r.y;
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 52

 //
 // Graphics output
 //
 if (lpDDSBack)
 {
 //
 // Erase background before drawing starts
 //
 DDBLTFX ddbfx;
 ZeroMemory(&ddbfx,sizeof(ddbfx));
 ddbfx.dwSize = sizeof(ddbfx);
 ddbfx.dwFillColor = RGB(0,0,0);
 lpDDSBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbfx);

 //
 // Draw halo
 //
 if (bDrawHalo)
 {
 HDC hDC;
 if (SUCCEEDED(lpDDSBack->GetDC(&hDC)))
 {
 SetBkColor(hDC,RGB(0,0,0));
 SetBkMode(hDC,TRANSPARENT);

 SelectObject(hDC,GetStockObject(WHITE_BRUSH));
 SelectObject(hDC,GetStockObject(WHITE_PEN));
 Ellipse(hDC,xs*(CM-Rc),ys*(CM-Rc),xs*(CM+Rc),ys*(CM+Rc));

 lpDDSBack->ReleaseDC(hDC);
 }
 }

 //
 // Lock surface for direct graphics operations
 //
 DDSURFACEDESC ddsd;
 ddsd.dwSize = sizeof(ddsd);
 if (SUCCEEDED(lpDDSBack->Lock(NULL,&ddsd,DDLOCK_SURFACEMEMORYPTR |
 DDLOCK_WAIT,NULL)))
 {
 int x,y;

 //
 // Draw field intensities
 //
 if (bDrawField)
 {
 int iu,iv,ix,iy;
 for (iu=0; iu<C; iu++) // Loop over u
 {
 for (iv=0; iv<C; iv++) // Loop over v
 {
 VECTOR g;
 CalcHaloField((double)(iu+0.5)*d,
 (double)(iv+0.5)*d,&g);
 double f = sqrt(radius(g.x+mesh[iu][iv].g.x,
 g.y+mesh[iu][iv].g.y));
 if ((f > fmax) || (fmax==0.0))
 fmax = f;
 f = f*200/fmax;
 if (t)
 {
 for (ix=0; ix<(xs*d); ix++)
 {
 for (iy=0; iy<(ys*d); iy++)
 {

 WDXSetPixel(&ddsd,xt+(iu*xs*d)+ix,
 yt+(iv*ys*d)+iy,f,0,0);
 }
 }
 }
 }
 }
 }

 //
 // Draw stars
 //
 for (is=0; is<N; is++)
 {
 int colR=255,colG=255,colB=255;

 switch (stars[is].c)
 {
 default:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 53

 colR=80; colG=80; colB=80;
 break;
 case 1:
 colR=0; colG=255; colB=0;
 break;
 case 2:
 colR=0; colG=0; colB=255;
 break;
 case 3:
 colR=255; colG=0; colB=0;
 break;
 case 4:
 colR=100; colG=255; colB=255;
 break;
 }

 //
 // Draw star on galaxy display
 //
 if (bDrawStars)
 {
 x = (int)(xs*stars[is].r.x);
 y = (int)(ys*stars[is].r.y);
 WDXIncPixel(&ddsd,xt+x,yt+y,colR,colG,colB);
 if (OPINTBIN)
 {
 binout[is].x = LOWORD((WORD)x);
 binout[is].y = LOWORD((WORD)y);
 }

 }

 //
 // Draw this star on total velocity - radius graph
 //
 if (bDrawText)
 {
 double v = radius(stars[is].V.x,stars[is].V.y);
 if ((v>vmax) || (vmax==0)) vmax = v;
 x = SIDEX + (int)(radius(stars[is].r.x-CM,
 stars[is].r.y-CM)*400.0/S);
 y = 400 - (int)abs(120*v/vmax);
 WDXIncPixel(&ddsd,x,y,colR,colG,colB);
 }
 }

 if (bDrawIndic)
 {
 //
 // Draw central star
 //
 x = (int)(xs*stars[0].r.x);
 y = (int)(ys*stars[0].r.y);
 for (is=-5; is<=5; is++)
 WDXSetPixel(&ddsd,xt+x+is,yt+y,255,255,0);
 for (is=-5; is<=5; is++)
 WDXSetPixel(&ddsd,xt+x,yt+y+is,255,255,0);

 //
 // Draw revolution indicator star
 //
 for (int it=0; it<NIS; it++)
 {
 x = (int)(xs*stars[it+1].r.x);
 y = (int)(ys*stars[it+1].r.y);
 for (is=-5; is<=5; is++)
 WDXSetPixel(&ddsd,xt+x+is,yt+y,192,0,192);
 for (is=-5; is<=5; is++)
 WDXSetPixel(&ddsd,xt+x,yt+y+is,192,0,192);
 }
 }

 //
 // Draw density - radius graph from dbins
 //
 if (bDrawText)
 {
 for (is=1; is<200; is++)
 {
 double density = dbins[is]*400.0/(is*d*S);
 if ((density>dmax) || (dmax==0))
 dmax = density;
 for (int iy=(int)(120*density/dmax); iy>0; iy--)
 if (iy < 120)
 WDXSetPixel(&ddsd,SIDEX+is,
 560-iy,192,192,192);
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 54

 for (is=0; is<200; is++)
 WDXSetPixel(&ddsd,SIDEX+is,560,128,128,255);
 for (is=0; is<120; is++)
 WDXSetPixel(&ddsd,SIDEX,560-is,128,128,255);
 }

 //
 // Draw axes for galaxy view
 //
 if (bDrawAxes)
 {
 for (is=1; is<C; is++)
 WDXSetPixel(&ddsd,xt+(int)(xs*d*(0.5+is)),
 yt+(int)(ys*d*C/2),255,128,128);
 for (is=1; is<C; is++)
 WDXSetPixel(&ddsd,xt+(int)(xs*d*C/2),
 yt+(int)(ys*d*(0.5+is)),255,128,128);
 }

 //
 // Draw axes for total velocity graph
 //
 if (bDrawText)
 {
 for (is=0; is<200; is++)
 WDXSetPixel(&ddsd,SIDEX+is,400,128,128,255);
 for (is=0; is<120; is++)
 WDXSetPixel(&ddsd,SIDEX,400-is,128,128,255);
 }

 lpDDSBack->Unlock(NULL);
 }

 //
 // Draw side info bar
 //
 if (bDrawText)
 {
 HDC hDC;
 if (SUCCEEDED(lpDDSBack->GetDC(&hDC)))
 {
 SetBkColor(hDC,RGB(0,0,0));
 SetBkMode(hDC,TRANSPARENT);

 SelectObject(hDC,hBigFont);
 PaintText(hDC,SIDEX,10,"Galaxy Simulation Program",RGB(255,0,0));

 SelectObject(hDC,hSmallFont);
 PaintText(hDC,SIDEX,32,"Written by Andrew Wedgbury",RGB(255,0,0));
 PaintText(hDC,SIDEX,50,"aw@wedger.demon.co.uk",RGB(255,0,0));

 #define TS 20
 int cl=4;

 sprintf(szBuffer,"Time: %.2f Myrs (%d steps)",(t*D)/1e6,t);
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"Timestep: %.2f Myrs (%d ms)",D/1e6,dwF-dwS);
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"Mesh: %dx%d cells (%d%% used) ",
 C,C,(int)(100.0*nCellsUsed/((C-1)*(C-1))));
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"Mesh size: %.fx%.f Kpc (%.2f Kpc/cell)",S,S,d);
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"Particles: %d (%d hits)",N,nEdgeCollisions);
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"Star mass: %.2e Msun",M0);
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"Initial Radius: %.2f Kpc sqrt(1-r²/R²)",R0);
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"Halo: %.2f Kpc (%.2e Msun)",Rc,Mh);
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"Revs: %.2f, %.2f",nRevs[0],nRevs[1]);
 PaintText(hDC,SIDEX,TS*cl++,szBuffer,RGB(192,192,255));

 cl=0;
 if (bPaused)
 {
 sprintf(szBuffer,"<PAUSED>");
 PaintText(hDC,SIDEX,600+(TS*cl++),szBuffer,RGB(255,0,0));

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 55

 }

 sprintf(szBuffer,"Ek: %.5e, Ep: %.5e",Ek,Ep);
 PaintText(hDC,SIDEX,600+(TS*cl++),szBuffer,RGB(192,192,255));

 sprintf(szBuffer,"TOTAL ENERGY: %.5e",Ek+Ep);
 PaintText(hDC,SIDEX,600+(TS*cl++),szBuffer,RGB(255,255,0));

 // Graph titles & scales
 sprintf(szBuffer,"Velocity / r (Vmax: %.2e)",vmax);
 PaintText(hDC,SIDEX,405,szBuffer,RGB(0,255,0));

 sprintf(szBuffer,"Density / r (Dmax: %.2e)",dmax);
 PaintText(hDC,SIDEX,565,szBuffer,RGB(0,255,0));

 lpDDSBack->ReleaseDC(hDC);
 }
 }

 //
 // Flip surface onto screen
 //
 while(1)
 {
 HRESULT ddrval;
 ddrval = lpDDSPrimary->Flip(NULL,0);
 if (ddrval == DD_OK)
 break;
 if (ddrval == DDERR_SURFACELOST)
 {
 ddrval = lpDDSPrimary->Restore();
 if (ddrval != DD_OK)
 break;
 }
 if (ddrval != DDERR_WASSTILLDRAWING)
 break;
 }
 }

 //
 // Write data to files
 //
 if (OPINTDATA)
 if ((int)(t*D) % (int)OPINTDATA == 0)
 WriteDataFile();

 if (OPINTBIN)
 if ((int)(t*D) % (int)OPINTBIN == 0)
 {
 sprintf(szBuffer,"\nCONFIGURATION at Dt,%e\n",(double)D*t);
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));

 //
 // Write density graph
 //
 sprintf(szBuffer,"\nMASS DENSITY DISTRIBUTION\nr,density\n");
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 for (is=1; is<200; is++)
 {
 sprintf(szBuffer,"%.2e,%.2e\n",
 (double)S*is/400.0,dbins[is]*400.0/(is*d*S));
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 }

 //
 // Write stars data
 //
 sprintf(szBuffer,"\nSTARS\ntype,mass,r,V,Ek,rx,ry\n");
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));

 for (is=0; is<1000; is++)
 {
 sprintf(szBuffer,"%d,%.2e,%.4e,%.4e,%.4e,%.2e,%.2e\n",
 stars[is].c,stars[is].m,
 radius(stars[is].r.x-CM,stars[is].r.y-CM),
 radius(stars[is].V.x,stars[is].V.y),
 CalcEnergy(is),
 stars[is].r.x-CM,stars[is].r.y-CM);
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 }

 //
 // Write field at mesh points
 //
 sprintf(szBuffer,"\nMESH FIELD\n");
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 int ix,iy;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 56

 for (ix=0; ix<C; ix++)
 {
 for (iy=0; iy<C; iy++)
 {
 double F = sqrt((mesh[ix][iy].g.x*mesh[ix][iy].g.x)+
 (mesh[ix][iy].g.y*mesh[ix][iy].g.y));
 sprintf(szBuffer,"%.3e,",F);
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 }
 sprintf(szBuffer,"\n");
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 }

 //
 // Write mass in mesh cells
 //
 sprintf(szBuffer,"\nMESH MASS\n");
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 for (ix=0; ix<C; ix++)
 {
 for (iy=0; iy<C; iy++)
 {
 sprintf(szBuffer,"%.2e,",mesh[ix][iy].m);
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 }
 sprintf(szBuffer,"\n");
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));
 }

 sprintf(szBuffer,"END\n");
 _write(hGraphFile,szBuffer,lstrlen(szBuffer));

 //
 // Write to bitmap
 //
 #define BMPDIM 256
 RGBTRIPLE bits[BMPDIM][BMPDIM];
 BITMAPINFOHEADER bmih;
 BITMAPFILEHEADER bmfh;

 bmfh.bfType = 0x4D42;
 bmfh.bfReserved1=0;
 bmfh.bfReserved2=0;
 bmfh.bfOffBits = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER);
 bmfh.bfSize = bmfh.bfOffBits + (3*BMPDIM*BMPDIM);

 bmih.biSize = sizeof(BITMAPINFOHEADER);
 bmih.biWidth = BMPDIM;
 bmih.biHeight = BMPDIM;
 bmih.biPlanes = 1;
 bmih.biBitCount = 24;
 bmih.biCompression = BI_RGB;
 bmih.biSizeImage = 0;
 bmih.biXPelsPerMeter = 300;
 bmih.biYPelsPerMeter = 300;
 bmih.biClrUsed =0;
 bmih.biClrImportant =0;

 for (ix=0; ix<BMPDIM; ix++)
 {
 for (iy=0; iy<BMPDIM; iy++)
 {
 bits[ix][iy].rgbtBlue =255;
 bits[ix][iy].rgbtGreen =255;
 bits[ix][iy].rgbtRed =255;
 }
 }

 for (is=N; is>=0; is--)
 {
 int y = stars[is].r.x*BMPDIM/S;
 int x = BMPDIM-(stars[is].r.y*BMPDIM/S);
 if ((x<BMPDIM && y<BMPDIM) && (x>=0 && y>=0))
 {
 if (is == 2)
 {
 int ii;
 for (ii=-5; ii<=5; ii++)
 {
 bits[x+ii][y].rgbtBlue = 255;
 bits[x+ii][y].rgbtGreen = 0;
 bits[x+ii][y].rgbtRed = 0;
 }
 for (ii=-5; ii<=5; ii++)
 {
 bits[x][y+ii].rgbtBlue = 255;
 bits[x][y+ii].rgbtGreen = 0;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 57

 bits[x][y+ii].rgbtRed = 0;
 }
 }
 else
 {
 int cnew = bits[x][y].rgbtBlue;
 cnew -= 5;
 if (cnew < 0) cnew=0;
 bits[x][y].rgbtBlue += cnew;
 bits[x][y].rgbtGreen += cnew;
 bits[x][y].rgbtRed += cnew;
 }
 }
 }

 int hBMPFile;
 char szFileName[MAX_PATH];
 sprintf(szFileName,"%s_%u.bmp",szDataFile,(int)(t*D/1e6));
 hBMPFile= _open(szFileName,_O_RDWR | _O_BINARY | _O_CREAT |
 _O_TRUNC,_S_IREAD | _S_IWRITE);
 _write(hBMPFile,&bmfh,sizeof(BITMAPFILEHEADER));
 _write(hBMPFile,&bmih,sizeof(BITMAPINFOHEADER));
 _write(hBMPFile,&bits,3*BMPDIM*BMPDIM);
 _close(hBMPFile);

 }
}

//
// FUNCTION: WriteDataFile
// Writes entry in temporal data file
//
void WriteDataFile(void)
{
 int is,ix,iy;

 //
 // Write file header if t=0
 //
 if (t==0)
 {
 sprintf(szBuffer,"GALAXY CONFIGURATION DATA FILE\nProduced by Galaxy
 Simulation\nWritten by Andrew Wedgbury\naw@wedger.demon.co.uk\n\n");
 _write(hDataFile,szBuffer,lstrlen(szBuffer));

 sprintf(szBuffer,"N,%d\nD,%e\nR0,%e\nRc,%e\nMGX,%e\nM0,
 %e\nMh,%e\nVDISP,%e\nC,%d\nS,%e\nd,%e\n",
 (int)N,(double)D,(double)R0,(double)Rc,(double)MGX,
 (double)M0,(double)Mh,(double)VDISP,(int)C,(double)S,(double)d);
 _write(hDataFile,szBuffer,lstrlen(szBuffer));
 sprintf(szBuffer,"Dt,t,Hits,Mesh,Ek,Ep,Etot,R50,R90,R100\n",
 (int)N,(double)D,(double)R0,(double)Rc,(double)MGX,
 (double)M0,(double)Mh,(double)VDISP,(int)C,(double)S,(double)d);
 _write(hDataFile,szBuffer,lstrlen(szBuffer));
 }

 //
 // Get 50% 90% and 100% mass radii
 //
 double Utot=0.0,U=0.0,R50,R90,R100;
 for (is=1; is<200; is++)
 Utot += dbins[is]*400.0/(is*d*S);
 for (is=1; is<200; is++)
 {
 U += dbins[is]*400.0/(is*d*S);
 if (U > Utot/2.0)
 {
 R50 = (double)S*is/400.0;
 break;
 }
 }
 for (; is<200; is++)
 {
 U += dbins[is]*400.0/(is*d*S);
 if (U > 1.0-(Utot/9.0))
 {
 R90 = (double)S*is/400.0;
 break;
 }
 }
 for (; is<200; is++)
 {
 U += dbins[is]*400.0/(is*d*S);
 if (U >= Utot)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 58

 {
 R100 = (double)S*is/400.0;
 break;
 }
 }

 //
 // Write row for this t
 //
 sprintf(szBuffer,"%.2e,%d,%d,%d,%.6e,%.6e,%e,%.6e,%.6e,%.6e\n",
 (double)D*t,(int)t,(int)nEdgeCollisions,
 (int)(100.0*nCellsUsed/((C-1)*(C-1))),Ek,Ep,Ep+Ek,R50,R90,R100);
 _write(hDataFile,szBuffer,lstrlen(szBuffer));
}

//
// FUNCTION: CalcEnergy
// Calculates kinetic energy of star
//
inline double CalcEnergy(int is)
{
 return 0.5 * stars[is].m * ((stars[is].V.x*stars[is].V.x) + (stars[is].V.y*stars[is].V.y));
}

//
// FUNCTION: InitRCache
// Initializes Rx and Ry arrays by precalculating values
//
void InitRCache(void)
{
 int ix,iy;
 RxCache[0][0]= 1;
 RyCache[0][0]= 1;

 for (ix=0; ix<C; ix++)
 {
 for (iy=0; iy<C; iy++)
 {
 if ((ix+iy)!=0)
 {
 double x = d*ix;
 double y = d*iy;
 double r = radius(x,y);

 RxCache[ix][iy]= G*x / (r*r*r);
 RyCache[ix][iy]= G*y / (r*r*r);
 }
 }
 }

}

//
// FUNCTION: LookupRx
// Looks up cached Rx value in array
//
inline double LookupRx(int ix, int iy)
{
 if ((ix>=0) && (iy>=0))
 return RxCache[ix][iy];

 if ((ix<=0) && (iy>=0))
 return -RxCache[-ix][iy];

 if ((ix>=0) && (iy<=0))
 return RxCache[ix][-iy];

 if ((ix<=0) && (iy<=0))
 return -RxCache[-ix][-iy];

 OutputDebugString("Rx lookup failed\n");
 return 1.0;
}

//
// FUNCTION: LookupRy
// Looks up cached Ry value in array
//
inline double LookupRy(int ix, int iy)
{
 if ((ix>=0) && (iy>=0))
 return RyCache[ix][iy];

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 59

 if ((ix<=0) && (iy>=0))
 return RyCache[-ix][iy];

 if ((ix>=0) && (iy<=0))
 return -RyCache[ix][-iy];

 if ((ix<=0) && (iy<=0))
 return -RyCache[-ix][-iy];

 OutputDebugString("Ry lookup failed\n");
 return 1.0;
}

//
// WNDPROC: Main Window Procedure
//
LRESULT CALLBACK DispWndProc(HWND hWnd,UINT message,WPARAM wParam,LPARAM lParam)
{
 switch(message)
 {
 case WM_CREATE:
 break;

 case WM_PAINT:
 case WM_ERASEBKGND:
 case WM_NCPAINT:
 return 0;

 case WM_CHAR: // PROCESS KEYBOARD INPUT
 switch(wParam)
 {
 case 'f':
 bDrawField = !bDrawField;
 OutputData();
 break;

 case 's':
 bDrawStars = !bDrawStars;
 OutputData();
 break;

 case 't':
 bDrawText = !bDrawText;
 OutputData();
 break;

 case 'i':
 bDrawIndic = !bDrawIndic;
 OutputData();
 break;

 case 'a':
 bDrawAxes = !bDrawAxes;
 OutputData();
 break;

 case 'h':
 bDrawHalo = !bDrawHalo;
 OutputData();
 break;

 case 'd':
 bDraw3D = !bDraw3D;
 OutputData();
 break;

 case ' ':
 bPaused = !bPaused;
 if (bPaused)
 {
 Sleep(0);
 OutputData();
 }
 break;

 case '+':
 xs *= 2;
 ys *= 2;
 xt = -xs*(double)(CM);
 yt = -ys*(double)(CM);
 OutputData();
 break;

 case '-':
 xs /= 2;
 ys /= 2;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 60

 xt = -xs*(double)(CM);
 yt = -ys*(double)(CM);
 OutputData();
 break;

 case ']':
 xt -= xs;
 OutputData();
 break;
 case '[':
 xt += xs;
 OutputData();
 break;
 case ';':
 yt += xs;
 OutputData();
 break;
 case '.':
 yt -= xs;
 OutputData();
 break;
 case '/':
 xs = WINDOWX/S;
 ys = WINDOWY/S;
 xt = 0; yt = 0;
 break;

 case 'r':
 t = 0;
 nRevs[0]=0;
 nRevs[1]=0;
 vmax=dmax=fmax=0;
 case 'c':
 case 'q':
 vmax=dmax=fmax=0;
 DestroyWindow(hDispWin);
 break;

 case 'w':
 if (!bPaused)
 {
 bPaused = 1;
 Sleep(0);
 WriteDataFile();
 bPaused = 0;
 }
 else
 WriteDataFile();
 break;
 }
 break;

 case WM_CLOSE:
 DestroyWindow(hDispWin);
 break;

 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 }
 return(DefWindowProc(hWnd,message,wParam,lParam));
}

BOOL FAR PASCAL SimDlgProc(HWND hDlg,UINT message,WPARAM wParam,LPARAM lParam)
{
 switch(message)
 {
 case WM_INITDIALOG:
 sprintf(szBuffer,"%.3e",D);
 SetDlgItemText(hDlg,IDCE_D,szBuffer);
 sprintf(szBuffer,"%.3e",R0);
 SetDlgItemText(hDlg,IDCE_R0,szBuffer);
 sprintf(szBuffer,"%.3e",MGX);
 SetDlgItemText(hDlg,IDCE_MGX,szBuffer);
 sprintf(szBuffer,"%.3e",Rc);
 SetDlgItemText(hDlg,IDCE_Rc,szBuffer);
 sprintf(szBuffer,"%.3e",Mh);
 SetDlgItemText(hDlg,IDCE_Mh,szBuffer);
 sprintf(szBuffer,"%.3e",VDISP);
 SetDlgItemText(hDlg,IDCE_VDISP,szBuffer);
 sprintf(szBuffer,"%d",C);
 SetDlgItemText(hDlg,IDCE_C,szBuffer);
 sprintf(szBuffer,"%.3e",S);
 SetDlgItemText(hDlg,IDCE_S,szBuffer);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 61

 sprintf(szBuffer,"%.3e",OPINTDATA);
 SetDlgItemText(hDlg,IDCE_OPINTDATA,szBuffer);
 sprintf(szBuffer,"%.3e",OPINTBIN);
 SetDlgItemText(hDlg,IDCE_OPINTBIN,szBuffer);
 sprintf(szBuffer,"%d",N);
 SetDlgItemText(hDlg,IDCE_N,szBuffer);
 SetDlgItemText(hDlg,IDCE_DATAFILE,szDataFile);
 return TRUE;

 case WM_COMMAND:
 switch (LOWORD(wParam))
 {
 case IDCANCEL:
 EndDialog(hDlg,0);
 break;

 case IDOK:
 GetDlgItemText(hDlg,IDCE_D,szBuffer,sizeof(szBuffer));
 D = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_R0,szBuffer,sizeof(szBuffer));
 R0 = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_MGX,szBuffer,sizeof(szBuffer));
 MGX = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_Rc,szBuffer,sizeof(szBuffer));
 Rc = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_Mh,szBuffer,sizeof(szBuffer));
 Mh = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_VDISP,szBuffer,sizeof(szBuffer));
 VDISP = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_C,szBuffer,sizeof(szBuffer));
 C = atoi(szBuffer);
 GetDlgItemText(hDlg,IDCE_S,szBuffer,sizeof(szBuffer));
 S = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_OPINTDATA,
 szBuffer,sizeof(szBuffer));
 OPINTDATA = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_OPINTBIN,
 szBuffer,sizeof(szBuffer));
 OPINTBIN = atof(szBuffer);
 GetDlgItemText(hDlg,IDCE_N,szBuffer,sizeof(szBuffer));
 N = atoi(szBuffer);
 GetDlgItemText(hDlg,IDCE_DATAFILE,
 szDataFile,sizeof(szDataFile));
 EndDialog(hDlg,1);
 break;

 case IDCB_PLAYBACK:
 break;

 case IDCB_ABOUT:
 break;
 }
 return TRUE;
 }
 return FALSE;
}

//
// PROGRAM ENTRY POINT
//
int PASCAL WinMain(HINSTANCE hInstance,HINSTANCE,LPSTR,int)
{
 OutputDebugString("WinMain: Program started\n");

 const char szControlClassName[] = "WGSim";
 const char szDispClassName[] = "WGSimOutput";
 hInst = hInstance;

 //
 // Register main window class
 //
 WNDCLASS wc;
 wc.style = 0;
 wc.lpfnWndProc = DispWndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInst;
 wc.hIcon = LoadIcon(hInst,(LPSTR)IDI_APP);
 wc.hCursor = LoadCursor(NULL,IDC_ARROW);
 wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
 wc.lpszMenuName = (LPSTR)IDM_APP;
 wc.lpszClassName = szDispClassName;
 if (!RegisterClass(&wc)) return -1;

 hBigFont = CreateFont((int)(20.0*WINDOWX/640.0),0,0,0,0,0,0,0,0,0,0,0,0,"Arial");
 hSmallFont = CreateFont((int)(15.0*WINDOWX/640.0),0,0,0,0,0,0,0,0,0,0,0,0,"Arial");

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 62

 //
 // Init variables to default
 //
 lstrcpy(szDataFile,"galaxy");

 //
 // Display simulation config dialog box
 //
 while (DialogBox(hInst,MAKEINTRESOURCE(IDD_SIM),NULL,(DLGPROC)SimDlgProc))
 {
 //
 // Init precalculated values
 //
 d = (double)S/C;
 CM = (double)(d*C/2.0);
 InitRCache();
 xs = WINDOWX/S;
 ys = WINDOWY/S;

 //
 // Create main window
 //
 hDispWin = CreateWindow(szDispClassName,"Galaxy Simulation output",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,CW_USEDEFAULT,WINDOWX+10,WINDOWY+34,
 NULL,NULL,hInst,NULL);

 if (!IsWindow(hDispWin))
 return -1;

 //
 // Create DirectDraw Objects
 //
 DDSURFACEDESC ddsd;
 DDSCAPS ddscaps;

 if (FAILED(DirectDrawCreate(NULL,&lpDD,NULL)))
 return -1;

 // Get exclusive mode
 if (FAILED(lpDD->SetCooperativeLevel(hDispWin,DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN)))
 return -1;

 //
 // Create the primary surface with 1 back buffer
 //
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE | DDSCAPS_FLIP | DDSCAPS_COMPLEX;
 ddsd.dwBackBufferCount = 1;
 if (FAILED(lpDD->CreateSurface(&ddsd,&lpDDSPrimary,NULL)))
 return -1;

 //
 // Get a pointer to the back buffer
 //
 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
 if (FAILED(lpDDSPrimary->GetAttachedSurface(&ddscaps,&lpDDSBack)))
 return -1;

 //
 // Setup surfaces ready for drawing
 //
 HDC hDC;
 RECT rWin;
 lpDDSBack->GetDC(&hDC);
 SetBkColor(hDC,RGB(0,0,0));
 SetBkMode(hDC,OPAQUE);
 GetWindowRect(hDispWin,&rWin);
 FillRect(hDC,&rWin,(HBRUSH)GetStockObject(BLACK_BRUSH));
 lpDDSBack->ReleaseDC(hDC);

 //
 // Show & update windows
 //
 ShowWindow(hDispWin,SW_SHOWNORMAL);
 OutputData();

 //
 // Create background calculation thread
 //
 DWORD dwThreadId,dwThrdParam=1;
 hCalcThread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)CalcThread,
 &dwThrdParam,0,&dwThreadId);
 SetThreadPriority(hCalcThread,THREAD_PRIORITY_NORMAL);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 63

 //
 // Start Windows message server and wait for simulation to end
 //
 OutputDebugString("WinMain: Starting message server\n");
 MSG msg;
 while (GetMessage(&msg,NULL,0,0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 //
 // Shutdown simulation
 //
 OutputDebugString("WinMain: Shutting down\n");

 TerminateThread(hCalcThread,2);
 CloseHandle(hCalcThread);

 _close(hDataFile);
 _close(hBinFile);

 if(lpDD != NULL)
 {
 if(lpDDSPrimary != NULL)
 {
 lpDDSPrimary->Release();
 lpDDSPrimary = NULL;
 }
 lpDD->Release();
 lpDD = NULL;
 }
 }
 DeleteObject(hBigFont);
 DeleteObject(hSmallFont);

 return 0;

}

resource.h
#define IDI_APP 101
#define IDM_APP 102
#define IDD_SIM 103
#define IDCE_N 1000
#define IDCE_DATAFILE 1002
#define IDCB_PLAYBACK 1003
#define IDCE_D 1004
#define IDCE_R0 1005
#define IDCE_MGX 1006
#define IDCE_Rc 1007
#define IDCE_Mh 1008
#define IDCE_VDISP 1009
#define IDCE_C 1010
#define IDCE_S 1011
#define IDCE_OPINTDATA 1012
#define IDCE_OPINTBIN 1013
#define IDCB_ABOUT 1018
#define ID_FILE_PLAYBACKSIM 40001
#define ID_FILE_RECORDSIM 40002
#define ID_FILE_EXIT 40003
#define ID_SIMULATION_NEW 40004
#define ID_SIMULATION_STOP 40005
#define ID_SIMULATION_CONTINUE 40006
#define ID_VIEW_FULLSCREEN 40007

resource.rc
#include "resource.h"

IDI_APP ICON DISCARDABLE "icon1.ico"

IDD_SIM DIALOG DISCARDABLE 0, 0, 217, 175
STYLE DS_MODALFRAME | DS_CENTER | WS_CAPTION | WS_SYSMENU
CAPTION "Galaxy Simulation"
FONT 8, "MS Sans Serif"
BEGIN
 EDITTEXT IDCE_D,60,20,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_R0,60,35,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_MGX,60,50,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_Rc,60,65,45,12,ES_AUTOHSCROLL

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY APPENDIX ANDREW WEDGBURY

 64

 EDITTEXT IDCE_Mh,60,80,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_VDISP,60,95,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_C,60,110,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_S,60,125,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_OPINTDATA,60,140,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_OPINTBIN,60,155,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_N,140,20,45,12,ES_AUTOHSCROLL
 EDITTEXT IDCE_DATAFILE,140,50,70,12,ES_AUTOHSCROLL
 PUSHBUTTON "ABOUT",IDCB_ABOUT,140,115,70,15
 PUSHBUTTON "EXIT",IDCANCEL,140,135,70,15
 DEFPUSHBUTTON "RUN SIMULATION",IDOK,140,154,70,14
 LTEXT "Stars",IDC_STATIC,190,22,17,8
 LTEXT "Timestep",IDC_STATIC,5,23,30,8
 LTEXT "Initial disk radius",IDC_STATIC,5,38,52,8
 LTEXT "Disk mass",IDC_STATIC,5,52,33,8
 LTEXT "Halo radius",IDC_STATIC,5,68,36,8
 LTEXT "Halo mass",IDC_STATIC,5,82,34,8
 LTEXT "Vel. dispersion",IDC_STATIC,5,97,46,8
 LTEXT "Mesh edge dim",IDC_STATIC,5,113,49,8
 LTEXT "Mesh size",IDC_STATIC,5,127,32,8
 LTEXT "Output every",IDC_STATIC,5,143,42,8
 LTEXT "Record every",IDC_STATIC,5,158,44,8
 LTEXT "Years",IDC_STATIC,110,23,19,8
 LTEXT "Kpc",IDC_STATIC,110,38,14,8
 LTEXT "Msun",IDC_STATIC,110,52,18,8
 LTEXT "Kpc",IDC_STATIC,110,68,14,8
 LTEXT "Msun",IDC_STATIC,110,82,18,8
 LTEXT "%",IDC_STATIC,110,97,8,8
 LTEXT "Cells",IDC_STATIC,110,113,16,8
 LTEXT "Kpc",IDC_STATIC,110,127,14,8
 LTEXT "Years",IDC_STATIC,110,143,19,8
 LTEXT "Years",IDC_STATIC,110,158,19,8
 LTEXT "Output file name",IDC_STATIC,140,40,52,8
 CTEXT "Galaxy Simulation Program by Andrew Wedgbury",
 IDC_STATIC,5,5,205,10
END

Icon file: “icon1.ico”
Link with: kernel32.lib, user32.lib, gdi32.lib, ddraw.lib

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

SIMULATION OF A GALAXY REFERENCES ANDREW WEDGBURY

 65

References
[1] Baugh C, Frenk C – How are galaxies made?
 1999, Physics World vol 12, issue 5

[2] Combes F, et al. - Galaxies and Cosmology
 1995, Springer

[3] Hockney R W, Eastwood J W – Computer Simulation using Particles
 1988, Adam Hilger

[4] Hohl F – N-Body Simulations of Disks
 1975, Dynamics of Stellar Systems 349-366

[5] Hohl F – Numerical Experiments with a Disk of Stars
 1971, The Astrophysical Journal 168:343-359

[6] Hohl F, Hockney R W – A Computer Model of Disks of Stars
 1968, Journal of Computational Physics 4, 306-324

[7] Hoyle F – Astronomy and Cosmology: A modern course
 1975, W H Freeman and company

[8] International Astronomical Union – The Spiral Structure of our Galaxy
 1970, D Reidel Publishing co.

[9] Sandage A – The Hubble Atlas of Galaxies
 1961, Carnegie Institution of Washington

[10] Tayler R J - Galaxies: Structure and evolution
 1978, CUP

[11] Zhang X – Secular Evolution of Spiral Galaxies
 1998, The American Astrophysical Journal, 449:93-111

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

